Search results

1 – 2 of 2
Article
Publication date: 5 May 2015

Babruvahan Pandurang Ronge and Prashant Maruti Pawar

– This paper aims to focus on the stochastic analysis of composite rotor blades with matrix cracking in forward flight condition.

Abstract

Purpose

This paper aims to focus on the stochastic analysis of composite rotor blades with matrix cracking in forward flight condition.

Design/methodology/approach

The effect of matrix cracking and uncertainties are introduced to the aeroelastic analysis through the cross-sectional stiffness properties obtained using thin-walled beam formulation, which is based on a mixed force and a displacement method. Forward flight analysis is carried out using an aeroelastic analysis methodology developed for composite rotor blades based on the finite element method in space and time. The effects of matrix cracking are introduced through the changes in the extension, extension-bending and bending matrices of composites, whereas the effect of uncertainties are introduced through the stochastic properties obtained from previous experimental and analytical studies.

Findings

The stochastic behavior of helicopter hub loads, blade root forces and blade tip responses are obtained for different crack densities. Further, assuming the behavior of progressive damage in same beam is measurable as compared to its undamaged state, the stochastic behaviors of delta values of various measurements are studied. From the stochastic analysis of forward flight behavior of composite rotor blades at various matrix cracking levels, it is observed that the histograms of these behaviors get mixed due to uncertainties. This analysis brings out the parameters which can be used for effective prediction of matrix cracking level under various uncertainties.

Practical implications

The behavior is useful for the development of a realistic online matrix crack prediction system.

Originality/value

Instead of introducing the white noise in the simulated data for testing the robustness of damage prediction algorithm, a systematic approach is developed to model uncertainties along with damage in forward flight simulation.

Details

Aircraft Engineering and Aerospace Technology: An International Journal, vol. 87 no. 3
Type: Research Article
ISSN: 0002-2667

Keywords

Article
Publication date: 5 March 2021

Abhijeet M. Malge and Prashant Maruti Pawar

Three different configurations of vertical axis wind turbines (VAWT) were fabricated by changing the storey height and their orientations. The purpose of this study is to find the…

Abstract

Purpose

Three different configurations of vertical axis wind turbines (VAWT) were fabricated by changing the storey height and their orientations. The purpose of this study is to find the effect of storey height and orientation on the performance of wind turbines. The multistory VAWT has three storeys. The first configuration had increased middle storey height, with 0–90-0 orientation of blades. Wherein the second turbine had equal storey heights. The third configuration had increased middle storey height with 0–120-240 orientation of blades. The blades were tested numerically and experimentally.

Design/methodology/approach

In this research work, prototypes of innovative multistory VAWT were built with different configurations and orientations. Three configurations of three-storey VAWT were fabricated by varying the height of storey of turbines. The orientations were made by keeping the storeys orthogonal to each other. Multistory VAWT was tested numerically and experimentally. ANSYS Fluent was used for computational fluid dynamic analysis of VAWT. K-epsilon model was used for numerical analysis of wind turbine. Experimentation was carried out in a wind tunnel for different tip speed ratios (TSR).

Findings

The three configurations of innovative multistory VAWT were tested numerically and experimentally for different TSR. It has been found that the VAWT with equal storey height had a better performance as compared to the other two configurations with increased middle storey height. The power coefficient of equal storey height VAWT was about 22%, wherein the power coefficient of turbines with reduced upper and lower storey height was between 5%–8%.

Research limitations/implications

The research work of multi-storey VAWT is very novel and original. The findings of the research will contribute to the existing work done in the field of VAWT. This will help other researchers to have insight into the development of multistory VAWT. The effect of storey height and configuration of multi-storey VAWT is studied numerically and experimentally, which concludes that the performance of equal storey is superior as compared to other configurations.

Practical implications

The multi-storey concept of VAWT was developed to counter the problem of wind direction. The blades of each storey were arranged orthogonal to each other. This helped to harness wind power irrespective of the direction of the wind. This will make the VAWT more sustainable and financially viable for domestic use.

Social implications

The turbines are specially designed for remotely located housed in rural areas where the power grid is not yet reached. Users can install the turbine on their rooftop and harness wind power of 100 W capacity. This will help them to make their life easy.

Originality/value

This research work is very original and first of a kind. The multistory concept of the wind turbine was checked for the effect of storey height and orientations of blades on its performance. Different configurations and orientations of the vertical axis were designed and developed for the first time.

Details

Journal of Engineering, Design and Technology , vol. 19 no. 6
Type: Research Article
ISSN: 1726-0531

Keywords

1 – 2 of 2